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Abstract

An important goal of a planetary exploration mission is to collect and

analyze surface samples. As part of the CMU Ambler project, we are

investigating techniques for collecting samples using a robot arm and

a range sensor. The aim of this work is to make the sample collection

operation fully autonomous. We describe in this paper the compo-

nents of the experimental system that we have developed, including a

perception module that extracts objects of interest from range images

and produces models of their shapes, and a manipulation module that

enables the system to pick up the objects identified by the perception

module. We have tested the system on a small testbed using natural
terrain.

1 Introduction

One of the most important goals of a planetary exploration mission is

to collect and analyze terrain samples. As part of the CMU Ambler

project [21, we are investigating techniques for autonomously collecting

samples. We have developed a system that is able to collect small rocks

using computer vision and planning. Our goal is to eventually integrate

the system to the Ambler system, a six-legged autonomous robot for

planetary exploration.

We have developed a rock sampling system that includes: a robot

arm, a range finder, and a small terrain mock-up that contains sand and

small rocks. The goal of the rock sampling system is to identify, locate,

and pickup rocks from the terrain. The control flow of the rock sampling

system is shown in Figure 2: First an range image of the scene is taken

and features are extracted from the image (Section 2). The features are

surface features such as surface discontinuities that are used to extract

the object boundaries. Then the contours of the objects in the scene are

extracted. Since, we are dealing with natural environments, we make

very weak assumptions on the possible shapes of the objects and on the

distribution of the features in the image. To handle those constraints, we

have developed a new shape extraction algorithm (Section 3.1) based

on the concept of deformable contours. The set of points enclosed by

the contour of an object is approximated by a superquadric surface (Sec-

tion 3.2). In some cases the object representation using superquadrics

may not be sufficient. An algorithm based on deformable surfaces can

extract directly a surface representation of an object using the image

features without relying on superquadric fitting (Section 4). Finally, the

parameters of the surface that approximate each object (superquadric

or deformable surface) are used to grasp it using a clam-shell gripper

(Section 6). The algorithms for object extraction assume flint there is

an initial guess of the positions of the objects in the image. We present
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an algorithm for selecting the object location hypothesis automatically

in Section 5.

2 Image acquisition and feature

extraction

In order to manipulate objects, we need an accurate description of their

shape. This implies that we need to use a sensor that can sense the

3-D surfaces observed in a scene. Therefore, the only possibility is to

use a sensor that measures range data. Many range sensing techniques

are available [3]. The range sensor that we are currently using is an

active sensor that consists of a projector equipped with a computer-

controlled LCD screen and a camera [14]. The projector illuminates

the scene through the LCD screen. As several illuminations patterns

are projected, the corresponding images of the scene are collected by

the camera. The range to each point in the scene is recovered from

the shape of the projected patterns. The output of the sensor is set of

four 256 × 256 images: an intensity image and three images, X, Y,

and Z that contain the three coordinates of the three spatial coordinates

of each pixel. The coordinates are with respect to a fixed reference

frame defined at calibration time. The spatial and range resolulion of

tiffs sensor is appropriate for tiffs application in which we need high-

resolution measurements at close range. We currently use the intensity

image for only display purposes although it could also be used in the

object extraction algorithms [ 12].

Figures 3 and 4 shnw the images of two scenes. The upper left

image is the intensity image, the other three images are the coordinate

images. The coordinate images are coded on 16 bits and displayed on

8 bits which accounts for the periodic effect in those images. Figure 5

shows a 3-D display of the data from Figure 3.

Once an image is acquired, the next step is to extract features of

the terrain that can help extract the objects of interest in the environ-

ment. Many different types of features can be extracted from range

data [4] ranging from planar facets to local extrema of the principal

curvatures [5]. However, most of those techniques do not apply to

this problem mainly because we are working in an unconstrained nat-

ural environment which rules out all the feature types, e.g. planar or

quadratic patches, that assume a known geometric structure of the envi-

ronment. Furthermore, it is our experience that the standard techniques

based on curvature analysis perform well only when the data is very

accurate and well distributed. We have chosen an approach in which

we detect local features that are relatively insensitive to noise. We do

not force the features to provide a complete description of the terrain,

in particular we do not expect those features to connect to each other

to form the boundaries of the objects in the scene. Instead, we want

each feature to give partial evidence of the presence of an object in its

vicinity. Grouping the detected features into objects is the job of the

segmentation algorithms introduced in the next Section.

Three types of features are extracted:
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• Range shadows: Objects produce shadows in the range images,

which are areas of the scene that are illuminated by the projector

but that are not visible from the camera because they are occluded

by an object's surface. This phenomenon occurs with any sensor

that uses a triangulation technique. Range shadows are therefore

a important cue for the extraction of objects. Extracting the range

shadows does not require any image processing since they are

identified by the sensor itself.

• Surface discontinuities: A surface discontinuity is a large vari-

ation of range between neighboring points in the image. Such

discontinuities occur mostly in the vicinity of the occluding edge

of an object. Surface discontinuities are detected by applying an

edge detector to the image of the range values, r"= ,_ + y_ + z2.

The final edges are obtained by thresholding the resulting edge

magnitude. The threshold is computed from the distribution of

the edge magnitudes in a large window centered at each image

pixel. The reason for using a variable threshold is that the range r

varies more rapidly as points are measured further from the sen-

sor. Spurious edges would be detected if a fixed threshold were

used.

• Surface normal discontinuities: Surface normal discontinuities

occur when two surfaces intersect as is the case when an object

is resting on top of the terrain. The normal discontinuities are

detected by first computing the unit surface normal n at each point

and by finding the low values of the dot products ni . n2 of the

surface normals at adjacent pixels. The three coordinate images

must be smoothed first since the surface normal computation is

quite sensitive to noise in the data. Further smoothing is applied

to the surface normals.

The image pixels that are labeled as one of the three feature types

are grouped into connected regions. The set of feature regions is the

input to the segmentation algorithms. Figure 6 shows the features

computed from the image of Figure 3. The features are shown as

shaded regions. As expected, the features are concentrated around the

objects although some are detected on the underlying terrain and no

group of features form a closed object boundary.

3 Object extraction: deformable

contours and superquadrics

The features give an indication of where the boundaries of the objects

may be located in the scene. However, the raw features are not sufficient

for reliably extracting the objects from the scene because the objects

may be small or partially buried in the terrain. Therefore, we cannot

use a simple region extraction that would assume that the features

are grouped into closed boundaries. Instead, we used the concept of

deformable contours and deformable surfaces. The idea is that a contour

that is attracted by 2-D forces generated by the detected features and

by the data points measured on the terrain is iteratively deformed until

the forces applied to it are in equilibrium. A smoothness constraint

is added to the forces so that the contour or the surface does not have

sharp discontinuities of orientation or curvature. The final product

is a smooth contour that approximates the shape of an object that is

partially enclosed by features. The advantage of this approach is that

object descriptions can be extracted from the image even if only few

scattered features are observed. This is in sharp contrast with other

vision problems such as model-based object recognition in which an

accurate model of the objects is known apriori. We do not make any

assumption on the shape of the objects other than a maximum and

minimum object size, and we do not make any assumption on the

configuration of the features.

This approach is inspired from Witkin's "snakes" [11 ] and from

Terzopoulos' symmetry-seeking surfaces [16]. We describe in detail the

deformable contours algorithm in the next Section.The algorithm

assumes that one point that lies inside the object is initially selected.

The actual selection of this starting point is the object of Section 5.

We assume for now that this point is available. Once a contour is

extracted, a three-dimensional model of the corresponding set of points

must be built. We use superquadrics to represent the object models

(Section 3.2).

3.1 Deformable contours

A deformable contour is a contour in a range image that is subject to

forces that change its shape over time. The contour reaches a stable

shape when all the forces are in equilibrium. The points that are inside

the region enclosed by the final contour are used to described the shape

of the object. The algorithm used to derive a shape representation from

the region is described in Section 3.2.

We represent a contour by an ordered set of pixel (rl. ci) where

rl is the row coordinate in the image, and cl is the column coordinate.

A 3-vector pl, that is the position of the scene point measured at pixel

(ri, cl), is associated with each pixel. In addition, the normal to the

contour n_ is defined at each p_. The ni's are two-dimensional vectors

expressed in image coordinates. Furthermore, n_ is always oriented

from the inside to the outside of the contour. It is always possible to

define such an orientation since the contour is guaranteed to be closed

without self-intersections. Each pl is subject to a set of forces. Each

force is a signed scalar that indicates in which direction p_ is attracted.

A positive force indicates that pi is attracted toward the outside of the

contour in the direction of the nearest feature. The algorithm is designed

in such a way that the contour can only grow outward.

Each pixel of the contour is subject to two types of forces 7(a).

The external forces are exerted by entities that are not part of the contour

such as features. The internal forces depend on the contour itself and

are independent of the data. Internal forces are typically used to force

the contour to be as smooth as possible.

The first external force is generated by the features. It is an

attractive force defined at each point p by:

= crfeature (ILe - .r(p)[IF feature _,U, ) (1)

where F(p) is the point of the image features that is the closest to p,

Crfeatur e is a function that relates the force to the distance between

contour point and feature (Figure 7(b)), and R,,_ is the maximum

expected object size. The closest point .T(p) is calculated by searching

the feature points along 16 directions around the contour normal. Since

this is a potentially expensive operation, we use several constraints to

limit the search: First, the features that are too far from the contour

point are not considered. Second, we use the fact that the order in

which features appear around an object is defined by the geometry of

the sensor and can be computed beforehand thus eliminating features

that cannot be part of the current object.

The second type of external force is generated by the starting

point. Its purpose is to prevent the contour from "overgrowing" by

generating an attractive force towards the center point. The force is

defined by:

Fcenter = acenter ( ' _-R_ p°'' ) (2)

where R_ is defined as before, p0 is the starting point, and Crcenter

is the attraction function (Figure 7(c)).
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The purpose of the internal force is to guarantee that the contour

is reasonably smooth. The idea is to make the shape of the contour

close to an ellipse. To do that we approximate the contour by an ellipse

_7 of equation (p - p,.)tA(P - pc) = 1, where p: is the center of the

ellipse, and A is a 2 x 2 symmetrical matrix. The distance between p

and C is defined by:

t(P - ps)tA(P - ps) - 11 (3)
O(p. t?) = 2]]A(p - p:)H

D(p. _7) is an approximation of the Euclidian distance between p

and _'. The internal force is defined by:

Finternal = crinternal (_) (4)

where :rinternal is the attraction function (Figure 7(d)), and K is
a constant that controls how far from an ellipse the contour is allowed

to be. In practice K = 0.4.

The contour deforms itself iteratively. At each iteration, the inter-

nal and external forces are computed at each point. Each point is moved

according to the resulting force, The complete algorithm follows two

steps:

1. Initialize: The initial contour is a small contour centered at the

starting point.

2. Iterate: The following steps are iterated until the contour does not

deform itself significandy.

• At each point p_ compute the sum of the forces: F =

Ffeatur e + Fcenter + Finternal.

• p_ is moved by one pixel in the direction of the nearest feature

point .F(p_) if F > 0.

• Resample the contour after all the contour points have been

moved according to the forces.

• Estimatu the best-fit ellipse _'.

Provided that there is a reasonable starting point, this algorithm

produces object contours that are quite good approximations of the true

object contour even if the features are very sparse. Figure 8 shows

the regions that have been found for each object in the scene using the

feature of Figure 6. The starting points were selected automatically

using the algorithm of Section 5.

3.2 Superquadrics

Once regions corresponding to objects have been segmented out using

the deformable contour algorithm, the corresponding set of 3-D points

must be grouped into a surface representation. The resulting object

models are used to compute grasp position and manipulator motion.

Although one could use the set of 3-D points computed by the

segmentation directly, we use superquadrics to represent the objects.

Superquadrics are generalizations of quadric surfaces [1] that can rep-

resent a wide variety of shape. Using superquadrics present several

advantages: First, it is a compact representation that allows us to repre-

sent a wide range of surfaces using a small set of parameters. Second,

it provides a global representation of an object whose surface is only

partially visible. Lastly, the parameters of a superquadric surface are

easily recovered from the coordinates of a set of points.

Superquadrics are described by an implicit equation F(x, y. z) = 1,

where:

e(x.y.,)= + + ( I (5)
ka$ / /]

and where (X, Y, Z) are the coordinates of (x, y, z) after transforma-

tion by a rigid transformation that defines the position and orientation

of the superquadric, and ah a2, and a3 are the sizes of the superquadric

along the three directions. Superquadrics can represent a variety of

shapes form cubes to ellipsoids by varying the two "roundness" pa-

rameters _-i and _2. Other parameters such as bending and tapering

can be included in the equation. To recover the superquadric from a

set of points, we use the Levenberg-Marquart minimization approach

suggested by Solina [1]. In this approach, the input set of points is first

approximated by an ellipsoid which constitutes the starting point of the

minimization, then an error function of the form:

E = E (F(x, y. z) - 1)2 (6)

(_.y.,)data point

isminimized with respectto the parameters of the superquadric. This

approach works well inour case inwhich a dense setof pointsismea-

suredon a portionofthe surface(see[I3]or [9])for othersuperquadric

fittingtechniques).

Figure 9 shows the superquadric models of the objectsfound in

Figure 8. The models are displayedas wireframes superimposed on the

intensityimage.

4 Object extraction:deformable
surfaces

Deformable contours extractthe objects by using essentiallythe ge-

ometry of the scene in the image plane. The resultisa region inthe

image thathas to be processed furthertoyielda complete description

of the object. A more direct,although more costly,approach would

be to directlyfind the closed surfacethatbest approximates the data,

thatisthe 3-D pointsmeasured on the terrainand the detected features.

This leadstothe idea of deformable surfaceswhich are smooth closed

surfaces thatare subjecttoforces from the terrainand the featmes. As

with the deformable contours,the surfacedeforms itselfuntilitclosely

fitsthe observed shape. The advantage isthatthe resultingclosed sur-

face should provide allthe information needed to pick up the object.

As inthe case of deformable contours, the algorithm assumes thatan

initialpoint isselected insideeach object.

The algorithm operates on discretedata,images and discretefea-

tures.However, for the sake of clarity it is best to think first of the case

of a continuous deformable surface that is subject to forces and deforms

itself over time. It can be shown that such a sin-face would reach a sta-

ble equilibrium when the Lagrangian of the system of forces reaches

a minimum according to the principle of least action [8]. A similar

application of the principle can be found in [17]. The Lagrangian is

defined by: L = T - U where T is the integral of the kinetic energy

over time and U is the integral of the potential energy. If the surface is

parametrized as x = xOl._c.t), y = y(ll,_.',t), z = z(q.,_.t), where t is

the lime, and 01. _:) are the parameters of the surface, then the problem

is to find the function that minimizes L. This is a variational problem

that can be solved by applying Euler's equation. To simplify the no-

tations, we will denote the points of the surface by rOl._'.t), r being

the 3-vector (x,y, z), and we will denote the partial derivatives by using

subscripts (e.g. r,, = _). Furthermore, we assume that the parameters

_1and _ vary between 0 and 1.

The term T depend only on the kinetic energy and can be written

as:

T=_'OJolJot/,Hrtlt2d_:d,/dt (7,

where/t is a weighting factor that characterizes the inertia of the surface.
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In our case, the surface should be deformed so that the following

constraints are satisfied: The surface should be smooth, the surface

should be as close as possible to the surrounding features, and the

surface should be close to the points measured on the terrain. To satisfy

those constraints, the potential energy term U is decomposed into three

components:

U = Usmoothness + Ufeatures + Uterrai n (8)

The term Usmoothness encapsulates the constraint that the surface

should be smooth and continuous. Formally it is defined by:

/0O/ofo'Usmoothnes s = ,,l (llr._ll2+ Itr,,ll=) + (9)

-2 (llr,,:_tl2+ Ilr,,,,LI2 + 21tr.°,,ll2) d._d,tdt

The weights -i and _2 control how much importance is given to

the smoothness constraint. The surface can have any arbitrary shape if

they are equal to zero, on the other hand contributions from the features

and the terrain are ignored if they are very large.

The term Ufeatures implements the constraint that the surface

should be as close as possible to the surrounding features. In order

to define it, we first have to define the distance between a point and

a feature. In order to do that, we represent each feature .T by the 3-

D polygonal approximation of its skeleton which is a set of 3-D line

segments. The distance between a point r on the deformable surface

and a feature ?F is the distance between r and its projection on the set

on line segments that describes f. We denote the projection by r(f).

Strictly speaking, we should compute the distance between r and all the

points of .T. Since this is too demanding computationally, we use the

polygonal approximation which allows us to compute the projection

directly. With this definition of r(?), we define:

/'/,'/oUfeatures = K E S(r. t, -_ltr - r(-_l[2 d._d,dt (10)

where the sum is taken over all the features S, and where K is

a weighting factor. If we think of a set of springs linking each point

of the surface to each feature, K would be the stiffness of the springs.

The attraction exerted by the features is basically proportional to the

squared distance between the point and the feature ]lr - r(:_ll z. An

attenuation factor S(r. t. _r) is added to avoid one undesirable effect of

the pure spring model: points that are very far from the features are

always subject to very strong forces. What we would like instead is to

have a strong attraction to all the points to initiate the deformation and

to have the strength of the attraction decrease over time. For a given

distance IIr - r(f)ll, this is equivalent to vary the stiffness of the spring

as a function of time. Furthermore, it is undesirable for the features to

apply an arbitrary large force to the points that are far away. We need

a cutoff distance over which points are not attracted. We define the

correction factor by:

S(r,t.f')=cr(1- to Ilr-r(._lt z) (11)
to - t

where the function <rvaries from 0 at - _ to 1 at +_ (Figure 10).

cr implements the idea of a cutoff distance: points that are too far away

from the feature are not attracted. The cutoff distance is given by the

normalizing term ro. In addition to the cutoff distance, for a given

distance IIr- r(f')l], the term tot_°_tmakes the stiffness of the spring vary
over time: The spring is strong a t = 0 and weakens over time until

it eventually disappears at t = to at which time only the smoothness

constraint and the attraction from the terrain are taken into account.

Another way to look at equation is to consider the term KIIr -
r(=_ll= as a fitting term in that it forces the surface to be as close

as possible to the features, and to consider the term S(r. t. f') as a

segmentation term in that it takes into account only the group of features

that is close to the starting point. The last term of the potential Uterrai n

reflects the attraction between the surface and the terrain. It is defined

as"

_ofo"_o"° ir(.f)lld.cdqd . (12)Uterrai n = .d iir _

where r('T) is the data point that is closest to the surface point

r. Since the term inside the integral would become arbitrarily large

as the surface moves closer to the data, we introduce a cutoff distance

D at which the potential stops increasing. The potential is therefore
redefined as:

_ if Hr - r(¢)ll > O
II,-_r)ll (13)

_- if IIr - r(7-)ll < OD

This potential implements a gravity force that increases as points move

closer• This has the effect that the feature term is dominant initially

when the surface is far from the observed terrain while the terrain

becomes dominant as the surface moves closer to the terrain. Notice

that strictly speaking we should take into account the contributions

from all the data points in the computation of the force applied to a

single surface point. Since this is computationally untractable we limit

ourselves to the closest data point.

We now have a definition of the function L given a set of features

and a set of points measured on the terrain. The problem is now to

find the surface r(q.,c, t) that minimizes L. The solution is found by

straightforward application of Euler's equation. We obtain the differ-

ential equation:

/tr# = _ dP(r) + _ l(r,_, + r,_,l) - (14)

_12(r_._._ + 2r._..,,._ + r,.i,l,_ ) +

KS(r,t. _'-)(r - r(_F)) + KSl(r.t.._[Ir - r(._ll 2

where $1 is computed from the first derivative of or: St(r. t..T) =

-or'(1- *0 _)to [-_L_ andPis
to-_ _o '0 -t _ ' the gradient of the potential

due to the terrain attraction, that is the integrand of Uterrain: P(r) =
r - r(_:VL_

ii,_,(r)ll 3 •

Applying Euler's equation solves the problem in the case of a

continuous surface subject to the attraction of the features and the ter-

rain and to a smoothness constraint. To actually compute a solution

to the resulting differential equation, we need to construct a discrete

approximation of both the surface, that is a discretization of the param-

eter space OI. ,z) and of the time t. Let us consider first the case of the

parameter space. Using a straightforward discretization of q and ,c in

regular intervals of [0, 1] would lead to serious problems at the edges

of the parameter space just like sampling a sphere along the meridians

and parallels leads to problems at the two poles. Since it is not desirable

to be forced to handle special cases in the discretization, we would like

to use a representation of the parameter space that is as uniform as

possible. To do that, we first create a unit sphere that is tesselated using

the icosahedron decomposition [6, 7], each point Mi of the tesselation is

parametrized by its spherical coordinates (q_, _._) and is a sample point

on the surface. The tesselation of the sphere has the property that it is

very uniform and that it does not exhibit any poles. With this represen-

tation the integrals become sums over the sample points, for example

the integral with respect to (q. ,_') in Uterrai n becomes:

V" 1 (15)
IIr(rj,._,)- r(r)ll

u_ sample point
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The time axis is also discretized: the deformation of the surface

is implemented as an iterative process, the discrete time is simply the

iteration number. With those discrete representations of (_1,4,) and t,

the derivatives involved in the final solution are approximated by the

appropriate finite differences. In particular ru is given by a combination

of the values of r at iterations t, t - 1, and t+ 1: rtt = r(t+ 1) - 2r(t)+r(t - 1).

Replacing r, by its discrete approximation in the differential equation,

we can express the surface at iteratio n t+ 1, that is the vectors r(tli._,,,i) ,

as a function of the surface at the two previous iterations t and t - 1. If

F is the right-hand side of 14, we have:

r(t+l)=r(t)+(r(t) r(t- 1))+F (16)

After initialization, the deformable surface is iteratively updated using

this relation.

To summarize, the algorithm can divided into two steps:

1. Initialize:

• Extract the terrain features: shadows, discontinuities, nor-

mal discontinuities. Compute the polygonal approximations

of the skeleton of the features.

• Generate the discretization of the parameter space by com-

puting a uniform sampling (_/,. _'_) of the unit sphere.

• Generate an initial surface. The initial surface is a sphere,

that is r_ = C + Ru, where C is the starting point that is

inside the object, R is the radius of the smallest object that

we expect to extract, and ul = (r, C)/llr_ - CII. The

algorithm for selecting C is described in Section 5.

2. Iterate until the number of iteration is greater than to

• For each point r of the surface, compute the projections r(.T)

and r('.r ).

• Compute the derivatives of r with respect to I/ and _, using

finite differences.

• Compute the update term F using Equation 14.

• Update the surface using Equation 16.

The result of the deformable surface algorithm is illustrated in

Figure 11: The upper left part of the figure shows the features overlaid

in white on top of the intensity image of a small scene. The upper right

part shows a 3-D view of the terrain with the polygonal approximations

of the features. The bottom three images show the evolution of the

shape of the approximating surface as the algorithm proceeds.

5 Automatic object selection
We have assumed so far that a point is chosen inside each object to

initiate the object segmentation process both in 2-D and 3-D. This point

should be qualitatively "close to" the center of the object. The question

of finding those initial points still remains. The simplest solution is to

have an operator interactively select a point in the observed image. This

would be acceptable in a teleoperated mode with the appropriate user

interface. However, it would be more useful to be able to automatically

compute the starting points from the input images. Since there is no

prior constraint on where the objects may be in the scene, the only

information that we can use are the features and a geometric model of

the sensor. Specifically, the automatic segmentation is based on the

observation that the presence of an object generates a shadow region in

the range image. Therefore, the objects in the scene should be "near"

the shadow regions extracted from the range image. The meaning of

"near", that is the position of an object with respect to its shadow, is

given by the sensor model.

The geometry of the problem is shown in Figure 12. For the sake

of clarity, this geometry assumes a one-dimensional sensor; the reason-

ing can be extended without difficulties to a 2-D sensor: A projector P

illuminates the scene while a camera C observes the illuminated scene.

We assume that a sensor model provides the coordinates of P and C in

a common coordinate system. An object in the scene creates a shadow

region between points A and B, corresponding to illumination direc-

tions La and LB that are known from the measured coordinates of A and

B and from the sensor model. Based on this geometry, the occluding

object must be within the dashed region R. A starting point for the 2-

or 3-D snakes can be computed by taking the center of that region. It is

important to note that this algorithm does not give us the center of the

(unknown) object but rather a point that is enough inside the object for

the object extraction algorithm to work.

The geometry is similar with a 2-D sensor except that the two

points A and B are now contours. In practice, two corresponding

points A and B are chosen on the shadow contour and the region R

is identified using the I-D geometry. The starting point S is selected

within R at some nominal distance D from A. D is chosen based on

the average expected radius of the objects in the scene and based on

the minimum and maximum sizes of objects that we can handle given

a gripper configuration. Those are reasonable criteria since there is no

point in segmenting out objects that we cannot manipulate. D is also

used to remove small shadow regions, presumably due to noise, and

large regions, generated by objects too large to handle.

The key to automatic object extraction is an accurate geometric

model of the sensor that allows us to compute the hypothesized posi-

tion of objects in the scene based on observed shadow regions. We

have implemented this technique using a model of our current sensor.

However, it is important to note that the algorithm can be generalized

to any range sensor provided that a geometric model exists. We are

in the process of modifying the algorithm in order to use an existing

geometric sensor modeling system [10]. This will lead to a largely

sensor-independent segmentation program.

6 Manipulation

Once we have extracted object descriptions, either superquadrics or

deformable surfaces, the last step is to grasp the object. Many different

types of gripper design and grasping strategies are possible. The choice

of a particular type of grasping is dictated by the analysis of the task.

Assuming that the objects to be sampled are mostly isolated and are

resting on a soft surface, e.g. sand, the grasping task has the following

characteristics:

• The objects are far enough from each other. No collision occurs

between the gripper and the neighboring rocks.

• We can allow the collision between the gripper and the neighbor-

ing sand. This is because

- damaging the neighboring sand grains is not important,

- the collision between the gripper and neighboring sand does

not cause the configuration of the rock to change.

• we do not know the exact shape of a rock beforehand.

Based on the characteristics of the task and the possible grasping

strategies [15], we have selected the spherical grasping strategy using

a clam-shell gripper. The gripper has two hemispherical jaws that

can close around the object. Using a surface representation of the

objects, the grasping strategy is as follows: the center of the gripper

is first aligned with the center of mass of the surface, then the gripper

is rotated so that the jaws are parallel to the main axis of the surface.

Finally the gripper is lowered until the jaws are in contact with the

terrain surrounding the object. The object is grasped by closing the two

jaws. Figure 13 show the gripper and the grasp operation.

This approach works well under the stated conditions. However,

we need tighter control of the grasping operation than is provided by
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the spherical grasping in more difficult environments (e.g. Figure 4). In

this case, we will use the object model calculated from the deformable

surfaces algorithm conjunction with a three-finger gripper. The object

model is more accurate than the superquadric model, and the three-

finger gripper allows for more flexibility in the grasping. The price to

pay is in longer computation time, and in more complex gripper design
and control.

7 Conclusion

We have developed a testbed for sampling in unstructured terrain, that

is the identification and manipulation of small natural objects. We

have implemented the complete cycle of perception,-representation, and

manipulation. The objects are extracted from range images from surface

features using either deformable contours or deformable surfaces. The

objects can be represented by superquadric surfaces and by discrete

surfaces. The system has been demonstrated in real natural environment

using a manipulator equipped with a clam-shell gripper.

Our current work concentrates on building a more complete de-

scription of the terrain by using multiple images, hierarchical represen-

tation of the observed scenes, and by using more accurate object de-

scription such as deformable surfaces. We are working on a three-finger

gripper to perform manipulation in a cluttered environment. Finally, we

are exploring strategies for modifying the terrain using the manipulator

to facilitate the sampling operations.

The sampling system currently resides on a small testbed. We

want to eventually move it to a real vehicle, and to demonstrate the

interaction between navigation and sampling, thus providing a complete

system for plunetary exploration.
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Figure 3: Range image of a scene 
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Figure 4: Range image of a complex scene 
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Figure 11: 3-D segmentation algorithm 
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Figure 12: Automatic object selection 
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